Quantum technologies, including computing, communication/security and sensing, have significantly advanced over the last years. Industry-specific applications are now being intensely researched and healthcare, medicine and the life sciences represent one of the focus areas.
Type Question Information Creative CommonsThis is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
© The Author(s), 2023. Published by Cambridge University PressQuantum technologies, including computing, communication/security and sensing, have significantly advanced over the last years. Industry-specific applications are now being intensely researched and healthcare, medicine and the life sciences represent one of the focus areas.
For medical quantum computing, the initial focus was on biochemical and computational biology problems (Emani et al., Reference Emani 2021; Fedorov and Gelfand, Reference Fedorov and Gelfand 2021; Outeiral et al., Reference Outeiral 2021; Marchetti et al., Reference Marchetti 2022; Cordier et al., Reference Cordier 2022; Santagati et al., Reference Santagati 2023); recently, clinical quantum computing experiments have increasingly drawn interest (Prousalis and Konofaos, Reference Prousalis and Konofaos 2019; Abbott, Reference Abbott 2021; Moradi et al., Reference Moradi 2022). In the last few years alone, over 40 studies on medical proof-of-concept quantum computing applications have been conducted, spanning genomics, clinical research and discovery, diagnostics and treatments/interventions. In particular, quantum machine learning/artificial intelligence has rapidly evolved and shown to be competitive with classical approaches in certain cases.
As concerns quantum security, the sensitivity of medical data is a key driving force. Due to the risk of “harvest now, decrypt later” attacks (Harishankar et al., Reference Harishankar 2023), quantum-safe standards are already being developed (NIST Announces First Four Quantum-Resistant Cryptographic Algorithms, 2023), and there are governmental directives around the preparation and implementation of quantum-safe cryptography (Migrating to Post-Quantum Cryptography, 2023).
Finally, quantum sensors seek to enhance diagnosis and treatment through highly sensitive measurements of physical and biological parameters. Diverse examples exist. First, single-photon detection techniques achieve improved low-light resolutions for applications such as cell dynamics (Callenberg et al., Reference Callenberg 2021). Second, quantum correlations may be harnessed to improve signal-to-noise ratios in magnetic resonance imaging (MRI) and positron emission tomography (PET) (Watts et al., Reference Watts 2021). Third, quantum dots are being used in cancer therapy to enhance the targeting and delivery of drugs to tumours (Ruzycka-Ayoush et al., Reference Ruzycka-Ayoush 2021). Fourth, atomic magnetometers enable accurate non-invasive magnetic sensing and imaging of relevant biological activity, including cardiac (MCG) (Bison et al., Reference Bison 2009), foetal (fMCG) (Strand et al., Reference Strand 2019), muscular (Broser et al., Reference Broser 2018), and brain activity (MEG) (Brookes et al., Reference Brookes 2022). The latter is an exemplar of the technology uptake, moving from the first demonstrations (Xia et al., Reference Xia 2006) to complete commercial systems in little over a decade.
This research question entails mapping the landscape of quantum technology applications in healthcare, medicine and the life sciences and providing a near-term and long-term outlook. Key threads include:
Quantum technology is poised to become a key enabler for progress towards precision medicine: keeping people healthy through proactive medical care and guidance at the level of an individual. Addressing the research threads above is essential in order to fully realise the technological promises in this space.
If you believe you can contribute to answering this Question with your research outputs find out how to submit in the Instructions for authors (https://www.cambridge.org/core/journals/research-directions-quantum-technologies/information/author-instructions/preparing-your-materials). This journal publishes Results, Analyses, Impact papers and additional content such as preprints and “grey literature”. Questions will be closed when the editors agree that enough has been published to answer the Question so before submitting, check if this is still an active Question. If it is closed, another relevant Question may be currently open, so do review all the open Questions in your field. For any further queries, check the information pages (https://www.cambridge.org/core/journals/research-directions-quantum-technologies/information/about-this-journal) or contact this email (quantumtechnologies@cambridge.org).
The authors declare none.